基于spark的大数据分析预测地震受灾情况的系统设计
在本篇博客中,我们将介绍如何使用Apache Spark框架进行地震受灾情况的预测。我们将结合数据分析、特征工程、模型训练和评估等步骤,最终建立一个预测模型来预测地震造成的破坏程度,同时使用可视化大屏的方式展示数据的分布。我们使用了合并后的地震数据作为我们的数据集。
·
基于spark的大数据分析预测地震受灾情况的系统设计
在本篇博客中,我们将介绍如何使用Apache Spark框架进行地震受灾情况的预测。我们将结合数据分析、特征工程、模型训练和评估等步骤,最终建立一个预测模型来预测地震造成的破坏程度,同时使用可视化大屏的方式展示数据的分布。
1、数据来源和准备
我们使用了合并后的地震数据作为我们的数据集。首先,让我们来看一下我们的数据集
# 读取数据
data = spark.read.csv("../data_ana/merged_data.csv", header=True, inferSchema=True).sample(False, 0.1, seed=42)
data.show()
2、数据预处理和特征工程
在数据预处理和特征工程阶段,我们将对数据进行清洗、转换和特征提取等操作。具体步骤如下:
# 数据预处理和特征工程
string_cols = ['gender_individual', 'presence_in_household', 'disability_individual',
'education_level_individual','marital_status_individual', 'legal_ownership_status',
'land_surface_condition', 'foundation_type','roof_type', 'ground_floor_type',
'other_floor_type', 'position', 'plan_configuration','condition_post_eq',
'damage_grade_x', 'technical_solution_proposed_x', 'area_assesed',
'technical_solution_proposed_y','vdcmun_name', 'district_name']
# 创建 StringIndexer 和 OneHotEncoder 对象
indexers = [StringIndexer(inputCol=column, outputCol=column+"_index",handleInvalid="skip") for column in string_cols]
encoder = OneHotEncoder(inputCols=[column+"_index" for column in string_cols],
outputCols=[column+"_encoded" for column in string_cols])
# 创建特征向量
assembler = VectorAssembler(inputCols=encoder.getOutputCols(), outputCol="features")
# 创建Pipeline
pipeline = Pipeline(stages=indexers + [encoder, assembler])
data_final = pipeline.fit(data).transform(data)
data_final.show()
3、异常数据处理
在异常数据处理阶段,我们将处理可能存在的异常情况,确保数据的完整性和准确性:
# 使用正则表达式提取数字部分
data_final = data_final.withColumn("damage_grade_y_numeric", regexp_extract(data_final["damage_grade_y"], r'\d+', 0))
# 将列转换为 numeric 类型
data_final = data_final.withColumn("damage_grade_y_numeric", data_final["damage_grade_y_numeric"].cast("int"))
# 显示转换后的结果
data_final.select("damage_grade_y", "damage_grade_y_numeric").show()
4、标题模型训练和评估
在模型训练和评估阶段,我们将使用随机森林分类器进行模型训练,并评估模型在测试集上的表现:
# 划分数据集为训练集和测试集
(train_data, test_data) = data_final.randomSplit([0.8, 0.2], seed=1234)
# 初始化随机森林分类器
rf = RandomForestClassifier(labelCol="damage_grade_y_numeric", featuresCol="features", numTrees=10)
# 训练模型
model = rf.fit(train_data)
# 在测试集上进行预测
predictions = model.transform(test_data)
# 模型评估
evaluator = MulticlassClassificationEvaluator(labelCol="damage_grade_y_numeric", predictionCol="prediction", metricName="accuracy")
accuracy = evaluator.evaluate(predictions)
print("Test Accuracy = {:.2f}%".format(accuracy * 100))
标题5、可视化大屏实现与展示
为了更直观地展示预测结果,我们设计了一个可视化大屏。该大屏将包括地图展示、受灾情况分布图以及预测结果展示等内容,以帮助用户更好地理解地震造成的破坏程度。
<html><head>
<meta charset="utf-8">
<title>www.husonghe.com</title>
<style>
html {
height: 100%;
background-image: -webkit-radial-gradient(ellipse farthest-corner at center center, #1b44e4 0%, #020f3a 100%);
background-image: radial-gradient(ellipse farthest-corner at center center, #1b44e4 0%, #020f3a 100%);
cursor: move;
}
body {
width: 100%;
margin: 0;
overflow: hidden;
}
</style>
</head>
<body>
<canvas id="canv" width="1920" height="572"></canvas>
<script>
var num = 200;
var w = window.innerWidth;
var h = window.innerHeight;
var max = 100;
var _x = 0;
var _y = 0;
var _z = 150;
var dtr = function(d) {
return d * Math.PI / 180;
};
var rnd = function() {
return Math.sin(Math.floor(Math.random() * 360) * Math.PI / 180);
};
var dist = function(p1, p2, p3) {
return Math.sqrt(Math.pow(p2.x - p1.x, 2) + Math.pow(p2.y - p1.y, 2) + Math.pow(p2.z - p1.z, 2));
};
var cam = {
obj: {
x: _x,
y: _y,
z: _z
},
dest: {
x: 0,
y: 0,
z: 1
},
dist: {
x: 0,
y: 0,
z: 200
},
ang: {
cplane: 0,
splane: 0,
ctheta: 0,
stheta: 0
},
zoom: 1,
disp: {
x: w / 2,
y: h / 2,
z: 0
},
upd: function() {
cam.dist.x = cam.dest.x - cam.obj.x;
cam.dist.y = cam.dest.y - cam.obj.y;
cam.dist.z = cam.dest.z - cam.obj.z;
cam.ang.cplane = -cam.dist.z / Math.sqrt(cam.dist.x * cam.dist.x + cam.dist.z * cam.dist.z);
cam.ang.splane = cam.dist.x / Math.sqrt(cam.dist.x * cam.dist.x + cam.dist.z * cam.dist.z);
cam.ang.ctheta = Math.sqrt(cam.dist.x * cam.dist.x + cam.dist.z * cam.dist.z) / Math.sqrt(cam.dist.x * cam.dist.x + cam.dist.y * cam.dist.y + cam.dist.z * cam.dist.z);
cam.ang.stheta = -cam.dist.y / Math.sqrt(cam.dist.x * cam.dist.x + cam.dist.y * cam.dist.y + cam.dist.z * cam.dist.z);
}
};
var trans = {
parts: {
sz: function(p, sz) {
return {
x: p.x * sz.x,
y: p.y * sz.y,
z: p.z * sz.z
};
},
rot: {
x: function(p, rot) {
return {
x: p.x,
y: p.y * Math.cos(dtr(rot.x)) - p.z * Math.sin(dtr(rot.x)),
z: p.y * Math.sin(dtr(rot.x)) + p.z * Math.cos(dtr(rot.x))
};
},
y: function(p, rot) {
return {
x: p.x * Math.cos(dtr(rot.y)) + p.z * Math.sin(dtr(rot.y)),
y: p.y,
z: -p.x * Math.sin(dtr(rot.y)) + p.z * Math.cos(dtr(rot.y))
};
},
z: function(p, rot) {
return {
x: p.x * Math.cos(dtr(rot.z)) - p.y * Math.sin(dtr(rot.z)),
y: p.x * Math.sin(dtr(rot.z)) + p.y * Math.cos(dtr(rot.z)),
z: p.z
};
}
},
pos: function(p, pos) {
return {
x: p.x + pos.x,
y: p.y + pos.y,
z: p.z + pos.z
};
}
},
pov: {
plane: function(p) {
return {
x: p.x * cam.ang.cplane + p.z * cam.ang.splane,
y: p.y,
z: p.x * -cam.ang.splane + p.z * cam.ang.cplane
};
},
theta: function(p) {
return {
x: p.x,
y: p.y * cam.ang.ctheta - p.z * cam.ang.stheta,
z: p.y * cam.ang.stheta + p.z * cam.ang.ctheta
};
},
set: function(p) {
return {
x: p.x - cam.obj.x,
y: p.y - cam.obj.y,
z: p.z - cam.obj.z
};
}
},
persp: function(p) {
return {
x: p.x * cam.dist.z / p.z * cam.zoom,
y: p.y * cam.dist.z / p.z * cam.zoom,
z: p.z * cam.zoom,
p: cam.dist.z / p.z
};
},
disp: function(p, disp) {
return {
x: p.x + disp.x,
y: -p.y + disp.y,
z: p.z + disp.z,
p: p.p
};
},
steps: function(_obj_, sz, rot, pos, disp) {
var _args = trans.parts.sz(_obj_, sz);
_args = trans.parts.rot.x(_args, rot);
_args = trans.parts.rot.y(_args, rot);
_args = trans.parts.rot.z(_args, rot);
_args = trans.parts.pos(_args, pos);
_args = trans.pov.plane(_args);
_args = trans.pov.theta(_args);
_args = trans.pov.set(_args);
_args = trans.persp(_args);
_args = trans.disp(_args, disp);
return _args;
}
};
(function() {
"use strict";
var threeD = function(param) {
this.transIn = {};
this.transOut = {};
this.transIn.vtx = (param.vtx);
this.transIn.sz = (param.sz);
this.transIn.rot = (param.rot);
this.transIn.pos = (param.pos);
};
threeD.prototype.vupd = function() {
this.transOut = trans.steps(
this.transIn.vtx,
this.transIn.sz,
this.transIn.rot,
this.transIn.pos,
cam.disp
);
};
var Build = function() {
this.vel = 0.04;
this.lim = 360;
this.diff = 200;
this.initPos = 100;
this.toX = _x;
this.toY = _y;
this.go();
};
Build.prototype.go = function() {
this.canvas = document.getElementById("canv");
this.canvas.width = window.innerWidth;
this.canvas.height = window.innerHeight;
this.$ = canv.getContext("2d");
this.$.globalCompositeOperation = 'source-over';
this.varr = [];
this.dist = [];
this.calc = [];
for (var i = 0, len = num; i < len; i++) {
this.add();
}
this.rotObj = {
x: 0,
y: 0,
z: 0
};
this.objSz = {
x: w / 5,
y: h / 5,
z: w / 5
};
};
Build.prototype.add = function() {
this.varr.push(new threeD({
vtx: {
x: rnd(),
y: rnd(),
z: rnd()
},
sz: {
x: 0,
y: 0,
z: 0
},
rot: {
x: 20,
y: -20,
z: 0
},
pos: {
x: this.diff * Math.sin(360 * Math.random() * Math.PI / 180),
y: this.diff * Math.sin(360 * Math.random() * Math.PI / 180),
z: this.diff * Math.sin(360 * Math.random() * Math.PI / 180)
}
}));
this.calc.push({
x: 360 * Math.random(),
y: 360 * Math.random(),
z: 360 * Math.random()
});
};
Build.prototype.upd = function() {
cam.obj.x += (this.toX - cam.obj.x) * 0.05;
cam.obj.y += (this.toY - cam.obj.y) * 0.05;
};
Build.prototype.draw = function() {
this.$.clearRect(0, 0, this.canvas.width, this.canvas.height);
cam.upd();
this.rotObj.x += 0.1;
this.rotObj.y += 0.1;
this.rotObj.z += 0.1;
for (var i = 0; i < this.varr.length; i++) {
for (var val in this.calc[i]) {
if (this.calc[i].hasOwnProperty(val)) {
this.calc[i][val] += this.vel;
if (this.calc[i][val] > this.lim) this.calc[i][val] = 0;
}
}
this.varr[i].transIn.pos = {
x: this.diff * Math.cos(this.calc[i].x * Math.PI / 180),
y: this.diff * Math.sin(this.calc[i].y * Math.PI / 180),
z: this.diff * Math.sin(this.calc[i].z * Math.PI / 180)
};
this.varr[i].transIn.rot = this.rotObj;
this.varr[i].transIn.sz = this.objSz;
this.varr[i].vupd();
if (this.varr[i].transOut.p < 0) continue;
var g = this.$.createRadialGradient(this.varr[i].transOut.x, this.varr[i].transOut.y, this.varr[i].transOut.p, this.varr[i].transOut.x, this.varr[i].transOut.y, this.varr[i].transOut.p * 2);
this.$.globalCompositeOperation = 'lighter';
g.addColorStop(0, 'hsla(255, 255%, 255%, 1)');
g.addColorStop(.5, 'hsla(' + (i + 2) + ',85%, 40%,1)');
g.addColorStop(1, 'hsla(' + (i) + ',85%, 40%,.5)');
this.$.fillStyle = g;
this.$.beginPath();
this.$.arc(this.varr[i].transOut.x, this.varr[i].transOut.y, this.varr[i].transOut.p * 2, 0, Math.PI * 2, false);
this.$.fill();
this.$.closePath();
}
};
Build.prototype.anim = function() {
window.requestAnimationFrame = (function() {
return window.requestAnimationFrame ||
function(callback, element) {
window.setTimeout(callback, 1000 / 60);
};
})();
var anim = function() {
this.upd();
this.draw();
window.requestAnimationFrame(anim);
}.bind(this);
window.requestAnimationFrame(anim);
};
Build.prototype.run = function() {
this.anim();
window.addEventListener('mousemove', function(e) {
this.toX = (e.clientX - this.canvas.width / 2) * -0.8;
this.toY = (e.clientY - this.canvas.height / 2) * 0.8;
}.bind(this));
window.addEventListener('touchmove', function(e) {
e.preventDefault();
this.toX = (e.touches[0].clientX - this.canvas.width / 2) * -0.8;
this.toY = (e.touches[0].clientY - this.canvas.height / 2) * 0.8;
}.bind(this));
window.addEventListener('mousedown', function(e) {
for (var i = 0; i < 100; i++) {
this.add();
}
}.bind(this));
window.addEventListener('touchstart', function(e) {
e.preventDefault();
for (var i = 0; i < 100; i++) {
this.add();
}
}.bind(this));
};
var app = new Build();
app.run();
})();
window.addEventListener('resize', function() {
canvas.width = w = window.innerWidth;
canvas.height = h = window.innerHeight;
}, false);
</script>
</body></html>
如有遇到问题可以找小编沟通交流哦。另外小编帮忙辅导大课作业,学生毕设等。不限于python,java,大数据,模型训练等。
更多推荐
已为社区贡献2条内容
所有评论(0)