目录

一、数据及分析对象

二、目的及分析任务

三、方法及工具

四、数据读入

五、数据理解

六、数据准备

七、模型训练

​编辑 八、模型评价

九、模型调参与预测


一、数据及分析对象

txt文件——“protein.txt”,主要记录了25个国家的9个属性,主要属性如下:

(1)ID:国家的ID。

(2)Country(国家类别):该数据涉及25个欧洲国家肉类和其他食品之间的关系。

(3)关于肉类和其他食品的9个数据包括RedMeat(红肉)、WhiteMeat(白肉)、Eggs(蛋类)、Milk(牛奶)、Fish(鱼类)、Cereals(谷类)、Starch(淀粉类)、Nuts(坚果类)、Fr&Veg(水果和蔬菜)。

二、目的及分析任务

理解机器学习方法在数据分析中的应用——采用k-means方法进行聚类分析。

(1)将数据集导入后,在初始化阶段随机选择k个类簇进行聚类,确定初始聚类中心。

(2)以初始化后的分类模型为基础,通过计算每一簇的中心点重新确定聚类中心。

(3)迭代重复“计算距离——确定聚类中心——聚类”的过程。

(4)通过检验特定的指标来验证k-means模型聚类的正确性和合理性。

三、方法及工具

scikit-learn、pandas和matplotlib等Python工具包。

四、数据读入

import pandas as pd
protein=pd.read_table("D:\\Download\\JDK\\数据分析理论与实践by朝乐门_机械工业出版社\\第5章 聚类分析\\protein.txt",
                     sep='\t')
protein.head()

五、数据理解

对数据框protein进行探索性分析,这里采用的实现方式为调用pandas包中数据框(DataFrame)的describe()方法。

protein.describe()

除了describe()方法,还可以调用shape属性和pandas_profiling包对数据框进行探索性分析。

protein.shape
(25, 10)

六、数据准备

在进行不同国家蛋白质消费结果分析时,要把对信息分析有用的数据提取出来,即关于肉类和其他食品的9列。具体实现方式为调用pandas包中数据框的drop()方法,删除列名“Country”的数据。

sprotein=protein.drop(['Country'],axis=1)
sprotein.head()

将待聚类数据提取后,需要对该数据集进行以均值为中心的标准化处理,在此采用的是统计学中的Z-Score标准化方法。

from sklearn import preprocessing
sprotein_scaled=preprocessing.scale(sprotein)
sprotein_scaled
array([[ 0.08294065, -1.79475017, -2.22458425, -1.1795703 , -1.22503282,
         0.9348045 , -2.29596509,  1.24796771, -1.37825141],
       [-0.28297397,  1.68644628,  1.24562107,  0.40046785, -0.6551106 ,
        -0.39505069, -0.42221774, -0.91079027,  0.09278868],
       [ 1.11969872,  0.38790475,  1.06297868,  0.05573225,  0.06479116,
        -0.5252463 ,  0.88940541, -0.49959828, -0.07694671],
       [-0.6183957 , -0.52383718, -1.22005113, -1.2657542 , -0.92507375,
         2.27395937, -1.98367386,  0.32278572,  0.03621022],
       [-0.03903089,  0.96810416, -0.12419682, -0.6624669 , -0.6851065 ,
         0.19082957,  0.45219769, -1.01358827, -0.07694671],
       [ 0.23540507,  0.8023329 ,  0.69769391,  1.13303099,  1.68457011,
        -0.96233157,  0.3272812 , -1.21918427, -0.98220215],
       [-0.43543839,  1.02336124,  0.69769391, -0.86356267,  0.33475432,
        -0.71124003,  1.38907137, -1.16778527, -0.30326057],
       [-0.10001666, -0.82775116, -0.21551801,  2.38269753,  0.45473794,
        -0.55314536,  0.51465594, -1.06498727, -1.5479868 ],
       [ 2.49187852,  0.55367601,  0.33240914,  0.34301192,  0.42474204,
        -0.385751  ,  0.3272812 , -0.34540128,  1.33751491],
       [ 0.11343353, -1.35269348, -0.12419682,  0.07009624,  0.48473385,
         0.87900638, -1.29663317,  2.4301447 ,  1.33751491],
       [-1.38071781,  1.24438959, -0.03287563, -1.06465843, -1.19503691,
         0.73021139, -0.17238476,  1.19656871,  0.03621022],
       [ 1.24167025,  0.58130455,  1.61090584,  1.24794286, -0.62511469,
        -0.76703815,  1.20169663, -0.75659327, -0.69930983],
       [-0.25248108, -0.77249407, -0.03287563, -0.49009911, -0.26516381,
         0.42332173, -1.35909141,  0.63117972,  1.45067184],
       [-0.10001666,  1.57593211,  0.60637272,  0.90320726, -0.53512697,
        -0.91583314, -0.04746827, -0.65379528, -0.24668211],
       [-0.13050955, -0.88300824, -0.21551801,  0.88884328,  1.62457829,
        -0.86003502,  0.20236471, -0.75659327, -0.81246676],
       [-0.89283166,  0.63656164, -0.21551801,  0.31428395, -0.38514744,
         0.35822393,  1.0143219 , -0.55099728,  1.39409338],
       [-1.10628185, -1.15929368, -1.67665709, -1.75412962,  2.97439408,
        -0.48804755,  1.0143219 ,  0.83677571,  2.12961342],
       [-1.10628185, -0.44095155, -1.31137232, -0.86356267, -0.98506557,
         1.61368162, -0.73450896,  1.14516971, -0.75588829],
       [-0.83184589, -1.24217931,  0.14976676, -1.22266225,  0.81468882,
        -0.28345445,  0.88940541,  1.45356371,  1.73356417],
       [ 0.02195488, -0.0265234 ,  0.51505153,  1.08993904,  0.96466835,
        -1.18552405, -0.35975949, -0.85939127, -1.20851601],
       [ 0.99772718,  0.60893309,  0.14976676,  0.96066319, -0.59511878,
        -0.61824316, -0.9218837 , -0.34540128,  0.43225947],
       [ 2.30892121, -0.60672281,  1.61090584,  0.50101573,  0.00479935,
        -0.73913909,  0.26482296,  0.16858872, -0.47299597],
       [-0.16100243, -0.91063679, -0.76344517, -0.07354359, -0.38514744,
         1.05570042,  1.32661312,  0.16858872, -0.69930983],
       [ 0.47934814,  1.27201813,  1.06297868,  0.24246404, -0.26516381,
        -1.26922123,  0.57711418, -0.80799227, -0.19010364],
       [-1.65515377, -0.80012261, -1.5853359 , -1.0933864 , -1.10504919,
         2.19956187, -0.79696721,  1.35076571, -0.52957443]])

七、模型训练

在使用k-means算法对其数据集进行聚类之前,我们在初始化阶段产生一个随机的k值作为类簇的个数。在scikit-learn框架中,使用“决定系数’作为性能评估的分数(score),该参数可以判断不同分类情况的统计模型对数据的拟合能力。这里采用的实现方式是调用sklearn.cluster模块的k-means.fit().score()方法。

#K值得选择
from sklearn.cluster import KMeans
NumberOfClusters=range(1,20)
kmeans=[KMeans(n_clusters=i) for i in NumberOfClusters]
score=[kmeans[i].fit(sprotein_scaled).score(sprotein_scaled) for i in range(len(kmeans))]
score
[-225.00000000000003,
 -139.5073704483181,
 -110.40242709032155,
 -93.99077697163418,
 -77.34315775475405,
 -64.22779496320605,
 -52.68794493054983,
 -46.148487504020046,
 -41.95277071693863,
 -35.72656669867341,
 -30.429164116494334,
 -26.430420929243024,
 -22.402609200395787,
 -19.80060035995764,
 -16.86466531666006,
 -13.979313757304398,
 -11.450822978023083,
 -8.61897844282252,
 -6.704106008601115]

上面的输出结果为每一个kmeans(n_clusters=i)(1<=i<=19)的预测值,为更直观地观察每个值的变化情况,可绘制一个ROC曲线。具体实现方式是调用matplotlib包的pyplot()方法。

import matplotlib.pyplot as plt
%matplotlib inline
plt.plot(NumberOfClusters,score)
plt.xlabel('Number of Clusters')
plt.ylabel('Score')
plt.title('Elbow Curve')
plt.show()

接着,随机设定聚类的数目为5,并以此为基础在数据矩阵上执行均值聚类,并查看模型预测结果,这里的具体实现方式是调用scikit-learn包的KMeans()方法和predict()方法,其中KMeans()方法需要设置的主要参数如下:

(1)algorithm使用默认值"auto",表示使用k-means中的elkan或full算法,由样本数据的稠密程度决定。

(2)n_clusters表示分类簇的数量。

(3)n_init表示运行该算法的尝试初始化次数。

(4)max_iter表示最大的迭代次数。

(5)verbose表示日志信息,这里使用默认“0”值,不输出日志信息。

myKMeans=KMeans(algorithm="auto",
               n_clusters=5,
               n_init=10,
               max_iter=200,
               verbose=0)
myKMeans.fit(sprotein_scaled)
y_kmeans=myKMeans.predict(sprotein)
print(y_kmeans)
[2 4 4 2 4 4 4 3 4 2 2 4 2 4 4 4 0 2 2 4 4 4 2 4 2]

通过以上分析,由确定的k=5,将数据集protein划分成5个类簇,类簇编号为0,1,2,3,4.接下来,显示每个样本所属的类簇编号。

protein["所隶属的类簇"]=y_kmeans
protein

 八、模型评价

可见,k-means算法可以完成相对应的聚类输出。接下来,引入轮廓系数对宣发聚类结果进行评价。这里采用的实现方式为调用Bio包Cluster模块的kcluster()方法,并调用silhouette_score()方法返回所有样本的轮廓系数,取值范围为[-1,1],轮廓系数值越大越好。

from sklearn.metrics import silhouette_score
silhouette_score(sprotein,y_kmeans)
0.2222236683250513
number=range(2,20)
myKMeans_list=[KMeans(algorithm="auto",
               n_clusters=i,
               n_init=10,
               max_iter=200,
               verbose=0) for i in number]
y_kmeans_list=[myKMeans_list[i].fit(sprotein_scaled).
               predict(sprotein_scaled) for i in range(len(number))]
score=[silhouette_score(sprotein,y_kmeans_list[i]) for i in range(len(number))]
score
[0.4049340501486218,
 0.31777138102456476,
 0.16996270462188423,
 0.21041645106099247,
 0.1943500298289292,
 0.16862742616667453,
 0.1868090290661263,
 0.08996856437394235,
 0.10531808817576255,
 0.13528249120860153,
 0.07381598489593617,
 0.09675173868153258,
 0.056460835203354785,
 0.10871862224667578,
 0.04670651599769748,
 0.03724019668260051,
 0.0074356180520073045,
 0.013165944671952217]
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
plt.plot(number,score)
plt.xlabel("k值")
plt.ylabel("轮廓系数")

九、模型调参与预测

通过轮廓系数的分析,我们可以确定聚类中心的数量为2,并以此为基础在样本数据集protein上执行聚类。

estimator=KMeans(algorithm="auto",
               n_clusters=2,
               n_init=10,
               max_iter=200,
               verbose=0)
estimator.fit(sprotein_scaled)
y_pred=estimator.predict(sprotein_scaled)
print(y_pred)
[1 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 0 1 0 1]

 绘制聚类图:

x1=[]
y1=[]
x2=[]
y2=[]
for i in range(len(y_pred)):
    if y_pred[i]==0:
        x1.append(sprotein['RedMeat'][i])
        y1.append(sprotein['WhiteMeat'][i])
    if y_pred[i]==1:
        x2.append(sprotein['RedMeat'][i])
        y2.append(sprotein['WhiteMeat'][i])
plt.scatter(x1,y1,c="red")
plt.scatter(x2,y2,c="orange")
plt.show()

Logo

永洪科技,连续七届荣获BI第一名的数据技术厂商,提供数据/智能分析、数据资产及治理、实施等能力。

更多推荐