TCGA 数据分析实战 —— 突变及拷贝数分析

前言

在介绍完 TCGAbiolinks 的查询下载和数据分析功能之后,我们简单展示几个示例,来练练手,加深对这个包的理解和使用

我们主要从基因组、转录组和表观组 3 个维度分别举例来进行说明。

基因组分析

拷贝数变异(CNV)在癌症的发生和发展研究中扮演重要的角色。由于基因组重排(如染色体缺失、重复、插入和易位),导致染色体片段的扩增或删失。

CNV 是大于 1kb 的基因组区域发生拷贝数的扩增和删失。

TCGA 的数据可以分为三个等级:

  • level 1: 原始的测序数据(fastafastq等
  • level 2: 比对好的 bam 文件
  • level 3: 经过标准化处理的数据

我们需要获取到 level 3 的数据来进行分析,来识别癌症基因组变异

数据预处理

我们分析的是 legacy 数据库中 Affymetrix Genome-Wide Human SNP Array 6.0 平台的数据

获取 20GBMLGG 样本的 CNV 数据

library(TCGAbiolinks) # 2.30.4
library(tidyverse)

query.gbm.nocnv <- GDCquery(
    project = "TCGA-GBM",
    data.category = "Copy Number Variation",
    data.type = "Masked Copy Number Segment",
    access = "open"
)
# 只挑选 20 个样本
query.gbm.nocnv$results[[1]] <- query.gbm.nocnv$results[[1]][1:20,]

GDCdownload(query.gbm.nocnv)

cnvMatrix <- GDCprepare(query.gbm.nocnv) %>%
    filter(abs(Segment_Mean) > 0.3) %>%
    mutate(label = if_else(Segment_Mean < -0.3, 0, 1)) %>%
    dplyr::select(-Segment_Mean, -GDC_Aliquot) %>%
    rename_with(~ c("Chromosome", "Start", "End", "Num.of.Markers", "Sample.Name", "Aberration")) %>%
    mutate(Chromosome = ifelse(Chromosome == "X", 23, Chromosome),
           Chromosome = ifelse(Chromosome == "Y", 24, Chromosome),
           Chromosome = as.integer(Chromosome)) %>%
    dplyr::select(c(5, 1:4, 6)) %>%
    # 注意要转换为 data.frame 格式
    as.data.frame()

查看 cnv 矩阵

cnvMatrix[1:3,1:3]
#                    Sample.Name Chromosome     Start
# 1 TCGA-16-1056-10A-01D-0517-01          2 212458388
# 2 TCGA-16-1056-10A-01D-0517-01          2 229437826
# 3 TCGA-16-1056-10A-01D-0517-01          2 232263591

识别 recurrent CNV

癌症相关的 CNV 会在许多样本中反复出现,我们使用 GAIA 包来识别这种显著的 recurrent CNV

GAIA 算法基于随机排列的统计检验,同时考虑样本内的显著性和同质性,以重复迭代的方式删除区间内的峰,直至剩下的峰没有显著性为止识别显著的 CNV


处理探针数据,这个需要从 GDC Reference Files 中下载相应版本的探针集合。

将文件读取进来,并进行相应的处理

markersMatrix <-  readr::read_tsv(
        "~/Downloads/snp6.na35.remap.hg38.subset.txt",
        show_col_types = FALSE
    )  %>%
    dplyr::filter(freqcnv == FALSE) %>%  # use for GISTIC
    dplyr::select(1:3) %>%
    rename_with(~c("Probe.Name", "Chromosome", "Start")) %>%
    mutate(Chromosome = ifelse(Chromosome == "X", 23, Chromosome),
           Chromosome = ifelse(Chromosome == "Y", 24, Chromosome),
           Chromosome = as.integer(Chromosome)) %>%
    dplyr::filter(!duplicated(Probe.Name)) %>%
    as.data.frame %>%
    arrange(Chromosome, Start)  # 排序是重要的

运行 gaia,识别 recurrent CNV

library(gaia)

set.seed(200)
markers_obj <- load_markers(as.data.frame(markersMatrix_filtered))
nbsamples <- length(unique(cnvMatrix$Sample.Name))
cnv_obj <- load_cnv(cnvMatrix, markers_obj, nbsamples)
suppressWarnings({
  cancer <- "GBM"
  results <- runGAIA(
    cnv_obj, markers_obj,
    output_file_name = paste0("~/Downloads/GAIA_", cancer, "_flt.txt"),
    # 指定需要分析的变异类型,-1 分析所有的变异
    aberrations = -1,
    # 指定需要分析的染色体,默认为 -1,表示所有染色体
    chromosomes = -1,
    # 使用近似的方式可以加快计算速度
    approximation = TRUE,
    # 设置迭代次数
    num_iterations = 5000,
    threshold = 0.25
  )
})

在运行 load_cnvrunGAIA 时经常会报错,可以使用下面修改后的代码。

load_cnv <- function(segmentation_matrix, markers_list, num_of_samples){
    
    message("Loading Copy Number Data");
    
    # Detect the chromosomes
    
    chromosomes <- as.numeric(sort(unique(names(markers_list))));
    
    chromosomes <- chromosomes[which(!is.na(chromosomes))];
    
    # Detect the aberration kinds
    
    aberration_kinds <- 1:length(unique(segmentation_matrix[,6]));
    
    names(aberration_kinds) <- sort(unique(segmentation_matrix[,6]));
    
    # Detect the samples
    
    samples <- 1:num_of_samples;
    
    if(!is.numeric(segmentation_matrix[,1])){
        
        sample_names <- unique(segmentation_matrix[,1]);
        
        for(i in 1:length(sample_names)){
            
            segmentation_matrix[which(segmentation_matrix[,1]==sample_names[i]),1] <- i;
            
        }
        
    }
    
    region_list <- list();
    
    # Create the final structure list of the returned list
    
    for(k in 1:length(aberration_kinds)){
        
        region_list[[ aberration_kinds[k] ]] <- list();
        
        for(i in 1:length(chromosomes) ){
            
            region_list[[ aberration_kinds[k] ]][[ chromosomes[i] ]] <- matrix(0, length(samples), ncol(markers_list[[ chromosomes[i] ]]));
            
            rownames(region_list[[ aberration_kinds[k] ]][[ chromosomes[i] ]]) <- samples;
            
            colnames(region_list[[ aberration_kinds[k] ]][[ chromosomes[i] ]]) <- c(1:ncol(markers_list[[ chromosomes[i] ]]));
            
        }
        
    }
    
    for(k in 1:length(aberration_kinds)){
        
        ab_ids <- which(segmentation_matrix[,6]==names(aberration_kinds[k]));
        
        # In this matrix all regions aberrant as aberration_kinds[k] are stored
        
        tmp_matrix1 <- segmentation_matrix[ab_ids,];
        
        if(class(tmp_matrix1)=="numeric"){
            
            tmp_matrix1 <- t(as.matrix(tmp_matrix1));
            
        }
        
        for(i in 1:length(chromosomes) ){
            
            # In this matrix all regions aberrant as aberration_kinds[k] for the i-th chromsome are stored
            
            tmp_matrix2 <- tmp_matrix1[which(tmp_matrix1[,2]==chromosomes[i]),];
            
            if(class(tmp_matrix2)=="numeric"){
                
                tmp_matrix2 <- t(as.matrix(tmp_matrix2));
                
            }
            
            message(".", appendLF = FALSE);
            
            for(j in 1:length(samples)){
                
                #In this matrix all regions aberrant as aberration_kinds[k] for the i-th chromsome and for the j-th sample are stored
                
                tmp_matrix3 <- tmp_matrix2[which(tmp_matrix2[,1]==samples[j]),];
                
                if(class(tmp_matrix3)=="numeric"){
                    
                    tmp_matrix3 <- t(as.matrix(tmp_matrix3));
                    
                }
                
                if(nrow(tmp_matrix3)>0){
                    
                    for(t in 1:nrow(tmp_matrix3)){
                        
                        start_prob <- tmp_matrix3[t,3];
                        
                        end_prob <- tmp_matrix3[t,4];
                        
                        start_index <- which(markers_list[[ chromosomes[i] ]][1,] == start_prob);
                        
                        end_index <- which(markers_list[[ chromosomes[i] ]][2,] == end_prob);
                        
                        if (is_empty(start_index) | is_empty(end_index))
                            
                            next
                        
                        region_list[[ aberration_kinds[k] ]][[ chromosomes[i] ]][samples[j], start_index:end_index] <- 1;
                        
                    }
                    
                }
                
            }
            
        }
        
    }
    
    message("\nDone");
    
    names(region_list) <- names(aberration_kinds);
    
    return(region_list);
    
}
peel_off <- function (pvalues_list, threshold, chromosomes, aberrations, 
                      discontinuity, hom_threshold) 
{
    regions_list <- list()
    for (i in 1:length(aberrations)) {
        region_chromosome_list <- list()
        cnv_index <- aberrations[i]
        for (j in 1:length(chromosomes)) {
            property_list <- list()
            chromosome_index <- chromosomes[j]
            message(".", appendLF = FALSE)
            curr_pvalue <- pvalues_list[[cnv_index]][[chromosome_index]]
            qvals <- qvalue(curr_pvalue)
            curr_qvalue <- qvals
            tmp_qvalue <- curr_qvalue
            tmp_start <- c()
            tmp_end <- c()
            start <- c()
            end <- c()
            qval <- c()
            tmp_pvalue <- curr_pvalue
            while (min(tmp_qvalue) < threshold) {
                tmp_list <- search_peaks_in_regions(tmp_qvalue, 
                                                    1, length(tmp_qvalue), discontinuity[[chromosome_index]], 
                                                    hom_threshold, threshold)
                # 原来是 tmp_list[[1]] == -1
                if (tmp_list[[1]][1] == -1) {
                    break
                }
                else {
                    tmp_start <- tmp_list[[1]]
                    tmp_end <- tmp_list[[2]]
                    for (k in 1:length(tmp_start)) {
                        start <- c(start, tmp_start[k])
                        end <- c(end, tmp_end[k])
                        qval <- c(qval, tmp_qvalue[tmp_start[k]])
                        tmp_pvalue[tmp_start[k]:tmp_end[k]] <- 1
                    }
                }
                qvals <- qvalue(tmp_pvalue)
                tmp_qvalue <- qvals
            }
            if (length(start) > 0) {
                property_list[[1]] <- start
                property_list[[2]] <- end
                property_list[[3]] <- qval
            }
            else {
                property_list[[1]] <- -1
                property_list[[2]] <- -1
                property_list[[3]] <- -1
            }
            region_chromosome_list[[chromosome_index]] <- property_list
        }
        regions_list[[cnv_index]] <- region_chromosome_list
    }
    message("\nDone")
    return(regions_list)
}
myrunGAIA <- function (cnv_obj, markers_obj, output_file_name = "", aberrations = -1, 
                       chromosomes = -1, num_iterations = 10, threshold = 0.25, 
                       hom_threshold = 0.12, approximation = FALSE) 
{
    message("\nPerforming Data Preprocessing")
    if (chromosomes == -1) {
        chromosomes <- as.numeric(sort(unique(names(markers_obj))))
        chromosomes <- chromosomes[which(!is.na(chromosomes))]
    }
    else {
        known_chr <- as.numeric(names(markers_obj))
        if ((length(known_chr[chromosomes]) != length(chromosomes)) || 
            (sum(is.na(known_chr[chromosomes])) > 0)) {
            error_string <- "Error in the list of chromosomes passed as argument.\n"
            error_string <- cat(error_string, "The list of the chromosomes that can be analyzed follows:\n", 
                                known_chr, "\n")
            stop(error_string, call. = FALSE)
        }
    }
    if (aberrations == -1) {
        aberrations <- as.numeric(names(cnv_obj))
        names(aberrations) <- names(cnv_obj)
        if (length(aberrations) > 0 && aberrations[1] == 0) {
            aberrations <- aberrations + 1
        }
    }
    else {
        aberrations <- as.numeric(names(cnv_obj))
        names(aberrations) <- names(cnv_obj)
        if (length(aberrations) > 0 && aberrations[1] == 0) {
            aberrations <- aberrations + 1
        }
        known_aberr <- as.numeric(names(cnv_obj))
        if ((length(known_aberr[aberrations]) != length(aberrations)) || 
            (sum(is.na(known_aberr[aberrations]) > 0))) {
            error_string <- "Error in the list of aberrations passed as argument.\n"
            error_string <- cat(error_string, "The aberrations that can be analyzed follow:\n", 
                                known_aberr, "\n")
            stop(error_string, call. = FALSE)
        }
    }
    discontinuity <- list()
    if (length(aberrations) == 2 && hom_threshold >= 0) {
        message("\nDone")
        message("\nComputing Discontinuity Matrix")
        for (i in 1:length(chromosomes)) {
            message(".", appendLF = FALSE)
            tmp <- cnv_obj[[2]][[chromosomes[i]]] - cnv_obj[[1]][[chromosomes[i]]]
            tmp_vec <- 0 * c(1:(ncol(tmp) - 1))
            for (k in 1:(ncol(tmp) - 1)) {
                for (z in 1:nrow(tmp)) {
                    tmp_vec[k] <- tmp_vec[k] + abs(tmp[z, k] - 
                                                       tmp[z, k + 1])
                }
            }
            discontinuity[[chromosomes[i]]] <- tmp_vec/nrow(cnv_obj[[2]][[chromosomes[i]]])
        }
    }
    else {
        if (length(aberrations) != 2 && hom_threshold >= 0) {
            message("\nHomogeneous cannot be applied on the data (data must contain exactly two different kinds of aberrations)\n")
        }
        for (i in 1:length(chromosomes)) {
            tmp <- cnv_obj[[1]][[chromosomes[i]]] - cnv_obj[[1]][[chromosomes[i]]]
            tmp_vec <- 0 * c(1:(ncol(tmp) - 1))
            discontinuity[[chromosomes[i]]] <- tmp_vec
            hom_threshold = -1
        }
    }
    message("\nDone")
    null_hypothesis_list <- list()
    null_hypothesis_chromosome_list <- list()
    message("Computing Probability Distribution")
    for (k in 1:length(aberrations)) {
        null_hypothesis_chromosome_list <- list()
        for (i in 1:length(chromosomes)) {
            aberrations_index <- (aberrations[k])
            chromosome_index <- chromosomes[i]
            obs_data <- cnv_obj[[aberrations_index]][[chromosome_index]]
            message(".", appendLF = FALSE)
            if (approximation == FALSE) {
                null_hypothesis_chromosome_list[[chromosome_index]] <- generate_null_hypothesis(obs_data, 
                                                                                                num_iterations)
            }
            if (approximation == TRUE) {
                null_hypothesis_chromosome_list[[chromosome_index]] <- generate_approx_null_hypothesis(obs_data, 
                                                                                                       num_iterations)
            }
        }
        null_hypothesis_list[[aberrations_index]] <- null_hypothesis_chromosome_list
    }
    pvalue_distribution_list <- list()
    for (k in 1:length(aberrations)) {
        tmp_pvalue_list <- list()
        for (i in 1:length(chromosomes)) {
            message(".", appendLF = FALSE)
            tmp_pvalue_list[[chromosomes[i]]] <- rev(cumsum(rev(null_hypothesis_list[[aberrations[k]]][[chromosomes[i]]])))
        }
        pvalue_distribution_list[[aberrations[k]]] <- tmp_pvalue_list
    }
    message("\nDone")
    pvalues_list <- list()
    message("Assessing the Significance of Observed Data")
    for (k in 1:length(aberrations)) {
        pvalue_chromosome_list <- list()
        for (i in 1:length(chromosomes)) {
            message(".", appendLF = FALSE)
            aberrations_index <- (aberrations[k])
            chromosome_index <- chromosomes[i]
            curr_pvalue <- pvalue_distribution_list[[aberrations_index]][[chromosome_index]]
            curr_obs_data <- cnv_obj[[aberrations_index]][[chromosome_index]]
            obs_freq <- apply(curr_obs_data, 2, sum)
            pvalue_chromosome_list[[chromosome_index]] <- round(curr_pvalue[obs_freq[] + 
                                                                                1], 7)
        }
        pvalues_list[[aberrations_index]] <- pvalue_chromosome_list
    }
    message("\nDone")
    if (length(aberrations) == 2) {
        gistic_label <- c("Del", "Amp")
        message("Writing ", paste(output_file_name, ".igv.gistic", 
                                  sep = ""), " File for Integrative Genomics Viewer (IGV) Tool")
        gistic <- matrix(nrow = 0, ncol = 8)
        colnames(gistic) <- c("Type", "Chromosome", "Start", 
                              "End", "q-value", "G-score", "average amplitude", 
                              "frequency")
        for (k in 1:length(aberrations)) {
            tmp_pvalue_list <- list()
            for (i in 1:length(chromosomes)) {
                message(".", appendLF = FALSE)
                curr_qval <- as.numeric(pvalues_list[[aberrations[k]]][[chromosomes[i]]])
                curr_qval <- qvalue(curr_qval)
                start <- 1
                for (z in 2:(length(curr_qval))) {
                    if (curr_qval[z - 1] != curr_qval[z]) {
                        end <- z - 1
                        print_qval <- curr_qval[z - 1]
                        gistic <- rbind(gistic, c(gistic_label[k], 
                                                  chromosomes[i], markers_obj[[chromosomes[i]]][1, 
                                                                                                start], markers_obj[[chromosomes[i]]][2, 
                                                                                                                                      end], print_qval, 0, 0, 0))
                        start <- z
                    }
                }
                end <- length(curr_qval)
                print_qval <- curr_qval[end]
                gistic <- rbind(gistic, c(gistic_label[k], chromosomes[i], 
                                          markers_obj[[chromosomes[i]]][1, start], markers_obj[[chromosomes[i]]][2, 
                                                                                                                 end], print_qval, 0, 0, 0))
            }
        }
        write.table(gistic, paste(output_file_name, ".igv.gistic", 
                                  sep = ""), sep = "\t", col.names = TRUE, row.names = FALSE, 
                    eol = "\n", quote = FALSE)
        message("\nDone")
    }
    if (hom_threshold >= 0) {
        message("Running Homogeneous peel-off Algorithm With Significance Threshold of ", 
                threshold, " and Homogenous Threshold of ", hom_threshold)
    }
    else {
        message("Running Standard peel-off Algorithm With Significance Threshold of ", 
                threshold)
    }
    significant_regions_list <- peel_off(pvalues_list, threshold, 
                                         chromosomes, aberrations, discontinuity, hom_threshold)
    if (output_file_name != "") {
        message("\nWriting Output File '", output_file_name, 
                "' Containing the Significant Regions\n", sep = "")
        results <- write_significant_regions(markers_obj, significant_regions_list, 
                                             output_file_name, chromosomes, aberrations)
        message("File '", output_file_name, "' Saved\n", sep = "")
    }
    else {
        results <- write_significant_regions(markers_obj, significant_regions_list, 
                                             output_file_name, chromosomes, aberrations)
    }
    return(results)
}

最后识别重复出现的 CNV,并绘制结果图

RecCNV <- as_tibble(results) %>%
  mutate_at(vars("q-value"), as.numeric) %>%
  mutate_at(vars(-"q-value"), as.integer) %>% {
    # 如果 q-value 为 0,则设置其值为数据中的最小非零值
    minval = min(.$`q-value`[which(.$`q-value` != 0)])
    mutate(., `q-value` = ifelse(`q-value` == 0, minval, `q-value`))
  } %>%
  mutate(score = -log10(`q-value`)) %>%
  as.data.frame()

threshold <- 0.3
gaiaCNVplot(RecCNV,threshold)
save(results, RecCNV, threshold, file = paste0("~/Downloads/", cancer,"_CNV_results.rda"))

recurrent CNV 基因注释

在使用 GAIA 识别出癌症中重复出现的基因组区域变异之后,我们需要将其注释到对应的基因。

我们使用 biomaRt 来获取所有人类基因的基因组范围信息,然后将显著变异的基因组区域映射到对应的基因上

library(GenomicRanges)

# 注意,这里用的是 hg38 的基因信息,
genes <- TCGAbiolinks:::get.GRCh.bioMart(genome = "hg38") %>%
    filter(gene_name != "" & seqnames %in% paste0('chr', c(1:22, "X", "Y"))) %>%
    mutate(
        seqnames = ifelse(
            seqnames == "X", 23, ifelse(seqnames == "Y", 24, seqnames)
        ),
        seqnames = as.integer(seqnames)
    ) %>%
    arrange(seqnames, start) %>%
    dplyr::select(c("gene_name", "seqnames", "start","end")) %>%
    rename_with(~ c("GeneSymbol", "Chr", "Start", "End"))

genes_GR <- makeGRangesFromDataFrame(genes, keep.extra.columns = TRUE)
save(genes_GR, genes, file = "~/Downloads/genes_GR.rda", compress = "xz")

CNV 区域注释到基因

# 选择需要的列
sCNV <- dplyr::select(RecCNV, c(1:4, 6)) %>%
    filter(`q-value` <= threshold) %>%
    arrange(1, 3) %>%
    rename_with(~c("Chr", "Aberration", "Start", "End", "q-value"))
# 转换为 GenomicRanges 格式
sCNV_GR <- makeGRangesFromDataFrame(sCNV, keep.extra.columns = TRUE)
# 寻找交叠区间
hits <- findOverlaps(genes_GR, sCNV_GR, type = "within")

sCNV_ann <- cbind(sCNV[subjectHits(hits),], genes[queryHits(hits),])
sCNV_ann[1:3,]
#     Chr Aberration   Start     End    q-value GeneSymbol Chr   Start     End
# 1     1          0 6520190 6995266 0.03735917       NOL9   1 6521347 6554513
# 1.1   1          0 6520190 6995266 0.03735917  RNU6-731P   1 6540854 6540964
# 1.2   1          0 6520190 6995266 0.03735917 AL591866.1   1 6547905 6548619

格式化输出内容

library(glue)

AmpDel_genes <- as_tibble(sCNV_ann, .name_repair = "universal") %>%
  mutate(
    AberrantRegion = glue("{Chr...1}:{Start...3}-{End...4}"),
    GeneRegion = glue("{Chr...7}:{Start...8}-{End...9}")
  ) %>%
  dplyr::select(c(6, 2, 5, 10, 11)) %>%
  mutate(Aberration = if_else( Aberration == 0, "Del", "Amp"))

save(RecCNV, AmpDel_genes, file = paste0("~/Downloads/", cancer, "_CNV_results.rda"))

输出结果如下

AmpDel_genes[1:3,]
# # A tibble: 3 × 5
#   GeneSymbol Aberration q.value AberrantRegion    GeneRegion       
#   <chr>      <chr>        <dbl> <glue>            <glue>           
# 1 NOL9       Del         0.0374 1:6520190-6995266 1:6521347-6554513
# 2 RNU6-731P  Del         0.0374 1:6520190-6995266 1:6540854-6540964
# 3 AL591866.1 Del         0.0374 1:6520190-6995266 1:6547905-6548619

基因组变异可视化

OncoPrint

下面我们展示如何绘制基因组突变数据,首先,我们使用的是之前介绍过的 complexHeatmap 包的 OncoPrint 函数。

GDCquery_maf 函数用于下载突变数据

query <- GDCquery(
    project = "TCGA-LGG", 
    data.category = "Simple Nucleotide Variation", 
    access = "open",
    data.type = "Masked Somatic Mutation", 
    workflow.type = "Aliquot Ensemble Somatic Variant Merging and Masking"
)
GDCdownload(query)
LGGmut <- GDCprepare(query)

query <- GDCquery(
    project = "TCGA-GBM", 
    data.category = "Simple Nucleotide Variation", 
    access = "open",
    data.type = "Masked Somatic Mutation", 
    workflow.type = "Aliquot Ensemble Somatic Variant Merging and Masking"
)
GDCdownload(query)
GBMmut <- GDCprepare(query)

mut <- LGGmut %>% add_row(GBMmut)

并提取胶质瘤相关通路中的基因信息

# 提取胶质瘤通路中基因的突变信息
Glioma_signaling <- as_tibble(TCGAbiolinks:::listEA_pathways) %>%
  filter(grepl("glioma", Pathway, ignore.case = TRUE)) %>%
  subset(Pathway == "Glioma Signaling")
# 只取 10 个基因的突变信息
Glioma_signaling_genes <- unlist(str_split(Glioma_signaling$Molecules, ","))[1:10]
mut <- mut[mut$Hugo_Symbol %in% Glioma_signaling_genes,]
# 获取对应的临床信息
gbm_clin <- GDCquery_clinic(project = "TCGA-GBM", type = "Clinical")
lgg_clin <- GDCquery_clinic(project = "TCGA-LGG", type = "Clinical")
clinical <- gbm_clin %>% add_row(lgg_clin)

绘制突变瀑布图

TCGAvisualize_oncoprint(
    mut = mut,
    gene = Glioma_signaling_genes,
    annotation = clinical[, c("bcr_patient_barcode", "primary_diagnosis", "vital_status", "ethnicity")],
    annotation.position = "bottom",
    color=c("background"="#CCCCCC", "DEL"="#fb8072", "INS"="#80b1d3", "SNP"="#fdb462"),
    label.font.size = 16,
    rm.empty.columns = FALSE
)

circos plot

基因组变异信息也可以使用 circos 图形来展示,我们使用前面介绍的 circlize 包来展示 CNV 和突变信息

CNV 的数据是 GAIA 分析的结果,突变数据使用的是从 GDC 数据库中获取的 LGG 样本的 MAF 文件的结果

首先,处理一下突变数据

# 提取需要的突变类型
mut_type <- c(
  "Missense_Mutation",
  "Nonsense_Mutation",
  "Nonstop_Mutation",
  "Frame_Shift_Del",
  "Frame_Shift_Ins"
)
mut <- filter(LGGmut, Variant_Classification %in% mut_type) %>%
  mutate(
    mut.id = glue("{Chromosome}:{Start_Position}-{End_Position}|{Reference_Allele}"),
    .before = Hugo_Symbol
  ) %>%
  # 只考虑至少在两个样本中发生突变的基因
  filter(duplicated(mut.id)) %>%
  dplyr::select(c("Chromosome","Start_Position","End_Position","Variant_Classification","Hugo_Symbol")) %>%
  distinct_all() %>% {
    # 将 typeNames 作为全局变量,后面还要使用
    typeNames <<- unique(.$Variant_Classification)
    type = structure(1:length(typeNames), names = typeNames)
    mutate(., type = type[Variant_Classification])
  } %>%
  dplyr::select(c(1:3,6,4,5))

CNV 数据处理

load("~/Downloads/GBM_CNV_results.rda")

cnv <- as_tibble(RecCNV) %>%
  # 值考虑小于阈值的区域,threshold = 0.3
  filter(`q-value` <= threshold) %>%
  select(c(1, 3, 4, 2)) %>%
  # 将染色体名称转换为 chr 开头的字符串
  mutate(
    Chromosome = ifelse(
      Chromosome == 23, "X", ifelse(Chromosome == 24, "Y", Chromosome)
    ),
    Chromosome = paste0("chr", Chromosome)
  ) %>%
  mutate(CNV = 1) %>%
  `names<-`(c("Chromosome","Start_position","End_position","Aberration_Kind","CNV"))

绘制 circos

library(circlize)

par(mar=c(1,1,1,1), cex=1)
circos.initializeWithIdeogram()
# 添加 CNV 结果
colors <- c("forestgreen","firebrick")
circos.genomicTrackPlotRegion(
    cnv, ylim = c(0, 1.2),
    panel.fun = function(region, value, ...) {
        circos.genomicRect(
            region, value, ytop.column = 2,
            ybottom = 0, col = colors[value[[1]] + 1],
            border = "white"
        )
        cell.xlim = get.cell.meta.data("cell.xlim")
        circos.lines(cell.xlim, c(0, 0), lty = 2, col = "#00000040")
    }
)
# 添加突变结果
colors <- structure(c("blue","green","red", "gold"), names = typeNames[1:4])
circos.genomicTrackPlotRegion(
    mut, ylim = c(1.2, 4.2),
    panel.fun = function(region, value, ...) {
        circos.genomicPoints(
            region, value, cex = 0.8, pch = 16, 
            col = colors[value[[2]]], ...)
    }
)
circos.clear()

# 添加图例
legend(
    -0.1, 0.2, bty = "n", y.intersp = 1,
    c("Amp", "Del"), pch = 15,
    col = c("firebrick", "forestgreen"),
    title = "CNVs", text.font = 1,
    cex = 0.8, title.adj = 0
)
legend(
    1, 0.2, bty = "n", y.intersp = 1,
    names(colors), pch = 20, col = colors,
    title = "Mutations", text.font = 1,
    cex = 0.8, title.adj = 0
)

部分区域可视化

我们可以将基因组范围限制在某一条染色体上,来更好地查看该染色体上突变和拷贝数的变异。

可以使用如下图形来展示

par(mar=c(.1, .1, .1, .1),cex=1.5)
circos.par(
  "start.degree" = 90, canvas.xlim = c(0, 1),
  canvas.ylim = c(0, 1), gap.degree = 270,
  cell.padding = c(0, 0, 0, 0), 
  track.margin = c(0.005, 0.005)
)
circos.initializeWithIdeogram(chromosome.index = "chr17")
circos.par(cell.padding = c(0, 0, 0, 0))
# 添加 CNV 结果
colors <- c("forestgreen","firebrick")
names(colors)  <- c(0,1)
circos.genomicTrackPlotRegion(
  cnv, ylim = c(0, 1.2),
  panel.fun = function(region, value, ...) {
    circos.genomicRect(
      region, value, ytop.column = 2,
      ybottom = 0, col = colors[value[[1]]],
      border = "white"
    )
    cell.xlim = get.cell.meta.data("cell.xlim")
    circos.lines(cell.xlim, c(0, 0), lty = 2, col = "#00000040")
  }
)

# 添加单基因突变结果
gene.mut <- mutate(mut, genes.mut = glue("{Hugo_Symbol}-{type}")) %>%
  filter(!duplicated(genes.mut)) %>% {
    n.mut <- table(.$genes.mut)
    mutate(., num = n.mut[.$genes.mut])
  } %>%
  mutate(
    genes.num = as.character(glue("{Hugo_Symbol}({num})")),
    type = type / 2
  ) %>%
  dplyr::select(-(6:8))

colors <- c("blue","green","red","gold")
names(colors)  <- typeNames[1:4]
circos.genomicTrackPlotRegion(
  gene.mut, ylim = c(0.3, 2.2), track.height = 0.05,
  panel.fun = function(region, value, ...) {
    circos.genomicPoints(
      region, value, cex = 0.4, pch = 16,
      col = colors[value[[2]]], ...
    )
  }
)

circos.genomicTrackPlotRegion(
  gene.mut, ylim = c(0, 1), track.height = 0.1, bg.border = NA
)
i_track = get.cell.meta.data("track.index")

circos.genomicTrackPlotRegion(
  gene.mut, ylim = c(0, 1),
  panel.fun = function(region, value, ...) {
    circos.genomicText(
      region, value, y = 1, labels.column = 3,
      col = colors[value[[2]]], facing = "clockwise",
      adj = c(1, 0.5), posTransform = posTransform.text,
      cex = 0.4, niceFacing = TRUE
    )
  },
  track.height = 0.1,
  bg.border = NA
)

circos.genomicPosTransformLines(
  gene.mut,
  posTransform = function(region, value)
    posTransform.text( 
      region,  y = 1, labels = value[[3]],
      cex = 0.4, track.index = i_track + 1
    ),
  direction = "inside",
  track.index = i_track
)

circos.clear()

legend(
  0, 0.38, bty = "n", y.intersp = 1, c("Amp", "Del"),
  pch = 15, col = c("firebrick", "forestgreen"),
  title = "CNVs", text.font = 1, cex = 0.7, title.adj = 0
)
legend(
  0, 0.2, bty = "n", y.intersp = 1, names(colors),
  pch = 16, col = colors, title = "Mutations",
  text.font = 1, cex = 0.7, title.adj = 0
)

完整代码:https://github.com/dxsbiocc/learn/blob/main/R/TCGA/Mutation_CNV_visualize.R

Logo

永洪科技,致力于打造全球领先的数据技术厂商,具备从数据应用方案咨询、BI、AIGC智能分析、数字孪生、数据资产、数据治理、数据实施的端到端大数据价值服务能力。

更多推荐