机器学习与数据挖掘--梯度下降法训练回归模型
使用梯度下降法训练回归模型
·
机器学习与数据挖掘实验一
(使用梯度下降法训练回归模型)
实验目的:
掌握线性回归的基本原理,以及梯度下降法和最小二乘法
实验环境:
Anaconda/Jupyter notebook/Pycharm
实验内容:
- 编码实现基于梯度下降的单变量线性回归算法,包括梯度的计算与验证;
- 画数据散点图,以及得到的直线;
- 画梯度下降过程中损失的变化图;
- 基于训练得到的参数,输入新的样本数据,输出预测值;
实验步骤:
import numpy as np
import matplotlib.pyplot as plt
train = np.loadtxt('./data1.txt',delimiter=',',skiprows=1) #读取txt文件
train_x = train[:,0]
train_y = train[:,1]
train_x
type(train_x)
train_x.shape #获取矩阵的形状(元组类型)
#数据散点图
plt.plot(train_x,train_y,'o')
plt.show()
# 初始化参数
theta0 = np.random.rand()
theta1 = np.random.rand()
# 预测函数
def f(x):
return theta0 + theta1 * x
# 目标函数
def D(x,y):
return 0.5 * np.sum((y-f(x))**2)
# 标准化
mu = train_x.mean()
sigma = train_x.std()
def standardize(x):
return (x - mu)/sigma
train_z = standardize(train_x)
# 绘图
plt.plot(train_z,train_y,'o')
plt.show()
ETA = 1e-3 # 学习率
diff = 1 #误差的差值
count = 0 #更新的次数
error = D(train_z,train_y)
while diff > 1e-2:
tmp_theta0 = theta0 - ETA * np.sum((f(train_z)-train_y))
tmp_theta1 = theta1 - ETA * np.sum((f(train_z)-train_y)*train_z)
theta0 = tmp_theta0
theta1 = tmp_theta1
current_error = D(train_z,train_y)
diff = error - current_error
error = current_error #计算与上一次误差的差值
# 输出日志
count += 1
log = '第 {} 次 : theta0 = {:.3f}, theta1 = {:.3f}, 差值 = {:.4f}'
print(log.format(count, theta0, theta1, diff))
# 绘图
x = np.linspace(-1,3,100)
plt.plot(train_z,train_y,'o')
plt.plot(x,f(x))
plt.show()
# 新的数据样本预测
f(standardize(100))
f(standardize(150))
f(standardize(200))
f(standardize(500))
更多推荐
所有评论(0)