
【python】在【机器学习】与【数据挖掘】中的应用:从基础到【AI大模型】
在大数据时代,数据挖掘与机器学习成为了各行各业的核心技术。Python作为一种高效、简洁且功能强大的编程语言,得到了广泛的应用。
在大数据时代,数据挖掘与机器学习成为了各行各业的核心技术。Python作为一种高效、简洁且功能强大的编程语言,得到了广泛的应用。
一、Python在数据挖掘中的应用
1.1 数据预处理
数据预处理是数据挖掘的第一步,是确保数据质量和一致性的关键步骤。良好的数据预处理可以显著提高模型的准确性和鲁棒性。
数据清洗
数据清洗是数据预处理的重要组成部分,主要包括去除缺失值、去除重复值和处理异常值。
import pandas as pd
# 读取数据
data = pd.read_csv('data.csv')
# 数据清洗
data = data.dropna() # 去除缺失值
data = data.drop_duplicates() # 去除重复值
数据变换
数据变换包括将数据从一种格式转换为另一种格式,例如将字符串日期转换为日期对象,以便于进一步分析和处理。
data['date'] = pd.to_datetime(data['date']) # 日期格式转换
数据归一化
数据归一化是将数据缩放到特定范围内,以消除不同特征之间量级的差异,从而提高模型的性能和训练速度。
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
data[['feature1', 'feature2']] = scaler.fit_transform(data[['feature1', 'feature2']])
高级预处理技术💞
除了基本的清洗和归一化外,高级预处理技术还包括缺失值填补、异常值处理和数据增强等。
- 缺失值填补:利用插值法或KNN方法填补缺失值。
- 异常值处理:利用Z-score方法检测并处理异常值。
- 数据增强:通过随机裁剪、翻转、旋转等方法增加数据的多样性。
# 使用插值法填补缺失值
data = data.interpolate()
# 使用KNN方法填补缺失值
from sklearn.impute import KNNImputer
imputer = KNNImputer(n_neighbors=3)
data_imputed = imputer.fit_transform(data)
# 使用Z-score方法检测异常值
from scipy import stats
import numpy as np
z_scores = np.abs(stats.zscore(data))
data = data[(z_scores < 3).all(axis=1)]
1.2 特征工程
特征工程是提升模型性能的重要手段。
特征选择
特征选择是从原始数据中选择最具代表性的特征,以减少数据维度,提高模型的性能和训练速度。
from sklearn.feature_selection import SelectKBest, f_classif
# 特征选择
X = data.drop('target', axis=1)
y = data['target']
selector = SelectKBest(score_func=f_classif, k=5)
X_new = selector.fit_transform(X, y)
特征提取
特征提取是从原始数据中提取新的、更具代表性的特征,如通过主成分分析(PCA)进行降维。
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)
特征构造
特征构造是通过组合或转换现有特征来创建新的特征,从而提高模型的预测能力。例如,创建交互特征或多项式特征。
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree=2, interaction_only=True)
X_poly = poly.fit_transform(X)
二、Python在机器学习中的应用
2.1 监督学习
监督学习是机器学习的主要方法之一,包括分类和回归。Scikit-learn是Python中常用的机器学习库,提供了丰富的模型和工具。
分类
分类任务的目标是将数据点分配到预定义的类别中。以下示例展示了如何使用随机森林分类器进行分类任务。
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 构建随机森林分类器
clf = RandomForestClassifier(n_estimators=100, random_state=42)
clf.fit(X_train, y_train)
# 预测
y_pred = clf.predict(X_test)
# 评估
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')
回归
回归任务的目标是预测连续值。例如,使用线性回归模型来预测房价。
from sklearn.linear_model import LinearRegression
# 构建线性回归模型
model = LinearRegression()
model.fit(X_train, y_train)
# 预测
y_pred = model.predict(X_test)
# 评估
from sklearn.metrics import mean_squared_error
mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse:.2f}')
使用随机森林分类器进行分类任务。首先,将数据集划分为训练集和测试集,然后构建随机森林分类器并进行训练,最后在测试集上进行预测并计算准确率。
2.2 非监督学习
非监督学习主要用于聚类和降维。KMeans和DBSCAN是常用的聚类算法。
聚类
聚类算法将相似的数据点分配到同一组。以下示例展示了如何使用KMeans算法进行聚类,并将结果可视化。
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
# 构建KMeans模型
kmeans = KMeans(n_clusters=3, random_state=42)
data['cluster'] = kmeans.fit_predict(data)
# 可视化聚类结果
plt.scatter(data['feature1'], data['feature2'], c=data['cluster'])
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('KMeans Clustering')
plt.show()
降维
降维技术可以减少数据的维度,使得数据更易于可视化和分析。例如,使用主成分分析(PCA)进行降维。
from sklearn.decomposition import PCA
# 使用PCA进行降维
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)
# 可视化降维结果
plt.scatter(X_pca[:, 0], X_pca[:, 1])
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.title('PCA of Dataset')
plt.show()
使用KMeans算法进行聚类,并将结果可视化。首先,构建KMeans模型并进行聚类,然后使用matplotlib库绘制聚类结果的散点图。
三、Python在深度学习中的应用
3.1 深度学习框架
深度学习是机器学习的一个子领域,主要通过人工神经网络来进行复杂的数据处理任务。TensorFlow和PyTorch是Python中最常用的深度学习框架。它们提供了构建和训练神经网络的丰富工具。
TensorFlow
TensorFlow是由谷歌开发的一个开源深度学习框架,广泛应用于各种深度学习任务中。
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
# 构建神经网络模型
model = Sequential([
Dense(128, activation='relu', input_shape=(X_train.shape[1],)),
Dense(64, activation='relu'),
Dense(1, activation='sigmoid')
])
# 编译模型
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_split=0.2)
# 评估模型
loss, accuracy = model.evaluate(X_test, y_test)
print(f'Accuracy: {accuracy:.2f}')
PyTorch
PyTorch是由Facebook开发的一个开源深度学习框架,以其灵活性和易用性受到广泛欢迎。
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
# 构建神经网络模型
class SimpleNN(nn.Module):
def __init__(self):
super(SimpleNN, self).__init__()
self.fc1 = nn.Linear(X_train.shape[1], 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, 1)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = torch.sigmoid(self.fc3(x))
return x
model = SimpleNN()
# 编译模型
criterion = nn.BCELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
train_dataset = TensorDataset(torch.tensor(X_train, dtype=torch.float32), torch.tensor(y_train, dtype=torch.float32))
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
for epoch in range(10):
for inputs, labels in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels.unsqueeze(1))
loss.backward()
optimizer.step()
# 评估模型
test_dataset = TensorDataset(torch.tensor(X_test, dtype=torch.float32), torch.tensor(y_test, dtype=torch.float32))
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
total = 0
correct = 0
with torch.no_grad():
for inputs, labels in test_loader:
outputs = model(inputs)
predicted = outputs.round()
total += labels.size(0)
correct += (predicted.squeeze() == labels).sum().item()
accuracy = correct / total
print(f'Accuracy: {accuracy:.2f}')
如何系统的去学习大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词
- L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节
- L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景
- L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例
- L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓
更多推荐
所有评论(0)