数据挖掘技术简介
<!--google_ad_client = "pub-2947489232296736";/* 728x15, 创建于 08-4-23MSDN */google_ad_slot = "3624277373";google_ad_width = 728;google_ad_height = 15;//--><script type="text/javascript"
·
<script type="text/javascript"> </script> <script type="text/javascript" src="http://pagead2.googlesyndication.com/pagead/show_ads.js"> </script>
摘要:数据挖掘是目前一种新的重要的研究领域。本文介绍了数据挖掘的概念、目的、常用方法、数据挖掘过程、数据挖掘的评价方法。对数据挖掘领域面临的问题做了介绍和展望。
关键词:数据挖掘数据集合
1.引言
数据挖掘(DataMining)是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。随着信息技术的高速发展,人们积累的数据量急剧增长,动辄以TB计,如何从海量的数据中提取有用的知识成为当务之急。数据挖掘就是为顺应这种需要应运而生发展起来的数据处理技术。是知识发现(KnowledgeDiscoveryinDatabase)的关键步骤。
2.数据挖掘的任务
数据挖掘的任务主要是关联分析、聚类分析、分类、预测、时序模式和偏差分析等。
⑴关联分析(associationanalysis)
关联规则挖掘是由RakeshApwal等人首先提出的。两个或两个以上变量的取值之间存在某种规律性,就称为关联。数据关联是中存在的一类重要的、可被发现的知识。关联分为简单关联、时序关联和因果关联。关联分析的目的是找出数据库中隐藏的关联网。一般用支持度和可信度两个阀值来度量关联规则的相关性,还不断引入兴趣度、相关性等参数,使得所挖掘的规则更符合需求。
⑵聚类分析(clustering)
聚类是把数据按照相似性归纳成若干类别,同一类中的数据彼此相似,不同类中的数据相异。聚类分析可以建立宏观的概念,发现数据的分布模式,以及可能的数据属性之间的相互关系。
⑶分类(classification)
分类就是找出一个类别的概念描述,它代表了这类数据的整体信息,即该类的内涵描述,并用这种描述来构造模型,一般用规则或决策树模式表示。分类是利用训练数据集通过一定的算法而求得分类规则。分类可被用于规则描述和预测。
⑷预测(predication)
预测是利用历史数据找出变化规律,建立模型,并由此模型对未来数据的种类及特征进行预测。预测关心的是精度和不确定性,通常用预测方差来度量。
⑸时序模式(time-seriespattern)
时序模式是指通过时间序列搜索出的重复发生概率较高的模式。与回归一样,它也是用己知的数据预测未来的值,但这些数据的区别是变量所处时间的不同。
⑹偏差分析(deviation)
在偏差中包括很多有用的知识,数据库中的数据存在很多异常情况,发现数据库中数据存在的异常情况是非常重要的。偏差检验的基本方法就是寻找观察结果与参照之间的差别。
3.数据挖掘对象
根据信息存储格式,用于挖掘的对象有关系数据库、面向对象数据库、数据仓库、文本数据源、多媒体数据库、空间数据库、时态数据库、异质数据库以及Internet等。
4.数据挖掘流程
⑴定义问题:清晰地定义出业务问题,确定数据挖掘的目的。
⑵数据准备:数据准备包括:选择数据--在大型数据库和数据仓库目标中提取数据挖掘的目标数据集;数据预处理--进行数据再加工,包括检查数据的完整性及数据的一致性、去噪声,填补丢失的域,删除无效数据等。
⑶数据挖掘:根据数据功能的类型和和数据的特点选择相应的算法,在净化和转换过的数据集上进行数据挖掘。
⑷结果分析:对数据挖掘的结果进行解释和评价,转换成为能够最终被用户理解的知识。
⑸知识的运用:将分析所得到的知识集成到业务信息系统的组织结构中去。
5.数据挖掘的方法
⑴神经网络方法
神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。典型的神经网络模型主要分3大类:以感知机、BP反向传播模型、函数型网络为代表的,用于分类、预测和模式识别的前馈式神经网络模型;以Hopfield的离散模型和连续模型为代表的,分别用于联想记忆和优化计算的反馈式神经网络模型;以ART模型、Koholon模型为代表的,用于聚类的自组织映射方法。神经网络方法的缺点是"黑箱"性,人们难以理解网络的学习和决策过程。共3页 第1页
<script type="text/javascript"> </script> <script type="text/javascript" src="http://pagead2.googlesyndication.com/pagead/show_ads.js"> </script>
<script type="text/javascript"> </script><script type="text/javascript" src="http://pagead2.googlesyndication.com/pagead/show_ads.js"> </script>
摘要:数据挖掘是目前一种新的重要的研究领域。本文介绍了数据挖掘的概念、目的、常用方法、数据挖掘过程、数据挖掘的评价方法。对数据挖掘领域面临的问题做了介绍和展望。
关键词:数据挖掘数据集合
1.引言
数据挖掘(DataMining)是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。随着信息技术的高速发展,人们积累的数据量急剧增长,动辄以TB计,如何从海量的数据中提取有用的知识成为当务之急。数据挖掘就是为顺应这种需要应运而生发展起来的数据处理技术。是知识发现(KnowledgeDiscoveryinDatabase)的关键步骤。
2.数据挖掘的任务
数据挖掘的任务主要是关联分析、聚类分析、分类、预测、时序模式和偏差分析等。
⑴关联分析(associationanalysis)
关联规则挖掘是由RakeshApwal等人首先提出的。两个或两个以上变量的取值之间存在某种规律性,就称为关联。数据关联是中存在的一类重要的、可被发现的知识。关联分为简单关联、时序关联和因果关联。关联分析的目的是找出数据库中隐藏的关联网。一般用支持度和可信度两个阀值来度量关联规则的相关性,还不断引入兴趣度、相关性等参数,使得所挖掘的规则更符合需求。
⑵聚类分析(clustering)
聚类是把数据按照相似性归纳成若干类别,同一类中的数据彼此相似,不同类中的数据相异。聚类分析可以建立宏观的概念,发现数据的分布模式,以及可能的数据属性之间的相互关系。
⑶分类(classification)
分类就是找出一个类别的概念描述,它代表了这类数据的整体信息,即该类的内涵描述,并用这种描述来构造模型,一般用规则或决策树模式表示。分类是利用训练数据集通过一定的算法而求得分类规则。分类可被用于规则描述和预测。
⑷预测(predication)
预测是利用历史数据找出变化规律,建立模型,并由此模型对未来数据的种类及特征进行预测。预测关心的是精度和不确定性,通常用预测方差来度量。
⑸时序模式(time-seriespattern)
时序模式是指通过时间序列搜索出的重复发生概率较高的模式。与回归一样,它也是用己知的数据预测未来的值,但这些数据的区别是变量所处时间的不同。
⑹偏差分析(deviation)
在偏差中包括很多有用的知识,数据库中的数据存在很多异常情况,发现数据库中数据存在的异常情况是非常重要的。偏差检验的基本方法就是寻找观察结果与参照之间的差别。
3.数据挖掘对象
根据信息存储格式,用于挖掘的对象有关系数据库、面向对象数据库、数据仓库、文本数据源、多媒体数据库、空间数据库、时态数据库、异质数据库以及Internet等。
4.数据挖掘流程
⑴定义问题:清晰地定义出业务问题,确定数据挖掘的目的。
⑵数据准备:数据准备包括:选择数据--在大型数据库和数据仓库目标中提取数据挖掘的目标数据集;数据预处理--进行数据再加工,包括检查数据的完整性及数据的一致性、去噪声,填补丢失的域,删除无效数据等。
⑶数据挖掘:根据数据功能的类型和和数据的特点选择相应的算法,在净化和转换过的数据集上进行数据挖掘。
⑷结果分析:对数据挖掘的结果进行解释和评价,转换成为能够最终被用户理解的知识。
⑸知识的运用:将分析所得到的知识集成到业务信息系统的组织结构中去。
5.数据挖掘的方法
⑴神经网络方法
神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。典型的神经网络模型主要分3大类:以感知机、BP反向传播模型、函数型网络为代表的,用于分类、预测和模式识别的前馈式神经网络模型;以Hopfield的离散模型和连续模型为代表的,分别用于联想记忆和优化计算的反馈式神经网络模型;以ART模型、Koholon模型为代表的,用于聚类的自组织映射方法。神经网络方法的缺点是"黑箱"性,人们难以理解网络的学习和决策过程。共3页 第1页
<script type="text/javascript"> </script> <script type="text/javascript" src="http://pagead2.googlesyndication.com/pagead/show_ads.js"> </script>
<script type="text/javascript"> </script><script type="text/javascript" src="http://pagead2.googlesyndication.com/pagead/show_ads.js"> </script>
更多推荐
所有评论(0)