转载 https://zhuanlan.zhihu.com/p/131652857
转载 https://help.aliyun.com/document_detail/126913.html?spm=a2c4g.11186623.6.590.75031b6e5mgkfi

DWS层的定义

Data Warehouse Service 层,轻度汇总层,从数据明细层层中对用户的行为做一个初步的汇总,抽象出来一些通用的维度:时间、ip、id,并根据这些维度做一些统计值,比如用户每个时间段在不同登录ip购买的商品数等。这里做一层轻度的汇总会让计算更加的高效,在此基础上如果计算仅7天、30天、90天的行为的话会快很多。我们希望80%的业务都能通过我们的DWS层计算,而不是ODS或者DWD

DWS层的设计原则

聚集是指针对原始明细粒度的数据进行汇总。DWS汇总数据层是面向分析对象的主题聚集建模。在本教程中,最终的分析目标为:最近一天某个类目(例如,厨具)商品在各省的销售总额、该类目销售额Top10的商品名称、各省用户购买力分布。因此,我们可以以最终交易成功的商品、类目、买家等角度对最近一天的数据进行汇总。数据聚集的注意事项如下:

  • 聚集是不跨越事实的。聚集是针对原始星形模型进行的汇总。为获取和查询与原始模型一致的结果,聚集的维度和度量必须与原始模型保持一致,因此聚集是不跨越事实的,所以原子指标只能基于一张事实表定义,但是支持原子指标组合为衍生原子指标。
  • 聚集会带来查询性能的提升,但聚集也会增加ETL维护的难度。当子类目对应的一级类目发生变更时,先前存在的、已经被汇总到聚集表中的数据需要被重新调整。
    此外,进行DWS层设计时还需遵循数据公用性原则。数据公用性需要考虑汇总的聚集是否可以提供给第三方使用。您可以思考,基于某个维度的聚集是否经常用于数据分析中。如果答案是肯定的,就有必要把明细数据经过汇总沉淀到聚集表中。

简单的说就是

  • 主题
  • 宽表
  • 轻度汇总

DWS层的建模

根据明细层事实表中的事实与维度表中的维度
在这里插入图片描述

Logo

永洪科技,致力于打造全球领先的数据技术厂商,具备从数据应用方案咨询、BI、AIGC智能分析、数字孪生、数据资产、数据治理、数据实施的端到端大数据价值服务能力。

更多推荐