数据仓库项目(第二节)采集数据
目录Flume采集到Kafka自定义Flume拦截器配置Flume conf编写控制Flume启停的脚本创建Kafka topic和启动消费者Flume采集Kafka消费者的数据并下沉到HDFS编写Flume confFlume启动停止脚本Flume采集到KafkaFlume的安装参考hadoop离线阶段(第十六节—1)flume的介绍、安装、使用和自定义拦截器Kafka的安装参考Kafka(第一
·
目录
Flume采集到Kafka
Flume的安装参考hadoop离线阶段(第十六节—1)flume的介绍、安装、使用和自定义拦截器
Kafka的安装参考Kafka(第一节)Kafka的介绍、Kafka集群搭建和常用kafka命令行
自定义Flume拦截器
1、创建maven工程,pom如下:
<repositories>
<repository>
<id>cloudera</id>
<url>https://repository.cloudera.com/artifactory/cloudera-repos/</url>
</repository>
</repositories>
<dependencies>
<dependency>
<groupId>org.apache.flume</groupId>
<artifactId>flume-ng-core</artifactId>
<version>1.6.0-cdh5.14.0</version>
<scope>provided</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.0</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
<encoding>UTF-8</encoding>
<!-- <verbal>true</verbal>-->
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>2.4.3</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<minimizeJar>true</minimizeJar>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
2、Flume ETL拦截器LogETLInterceptor,主要用于过滤时间戳不合法和json数据不完整的日志,代码如下:
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;
import java.nio.charset.Charset;
import java.util.ArrayList;
import java.util.List;
public class LogETLInterceptor implements Interceptor {
@Override
public void initialize() {
}
@Override
public Event intercept(Event event) {
String body = new String(event.getBody(), Charset.forName("UTF-8"));
// body为原始数据,newBody为处理后的数据,判断是否为display的数据类型
if (LogUtils.validateReportLog(body)) {
return event;
}
return null;
}
@Override
public List<Event> intercept(List<Event> events) {
ArrayList<Event> intercepts = new ArrayList<>();
// 遍历所有Event,将拦截器校验不合格的过滤掉
for (Event event : events) {
Event interceptEvent = intercept(event);
if (interceptEvent != null){
intercepts.add(interceptEvent);
}
}
return intercepts;
}
@Override
public void close() {
}
public static class Builder implements Interceptor.Builder {
public Interceptor build() {
return new LogETLInterceptor();
}
@Override
public void configure(Context context) {
}
}
}
3、Flume日志过滤工具类,主要用于判断日志数据是否合法,代码如下:
import org.apache.commons.lang.StringUtils;
import org.apache.commons.lang.math.NumberUtils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public class LogUtils {
private static Logger logger = LoggerFactory.getLogger(LogUtils.class);
/**
* 日志检查,正常的log会返回true,错误的log返回false
*
* @param log
*/
public static boolean validateReportLog(String log) {
try {
// 日志的格式是:时间戳| json串
// 1549696569054 | {"cm":{"ln":"-89.2","sv":"V2.0.4","os":"8.2.0","g":"M67B4QYU@gmail.com","nw":"4G","l":"en","vc":"18","hw":"1080*1920","ar":"MX","uid":"u8678","t":"1549679122062","la":"-27.4","md":"sumsung-12","vn":"1.1.3","ba":"Sumsung","sr":"Y"},"ap":"weather","et":[]}
String[] logArray = log.split("\\|");
if (logArray.length < 2) {
return false;
}
// 检查第一串是否为时间戳 或者不是全数字
if (logArray[0].length() != 13 || !NumberUtils.isDigits(logArray[0])) {
return false;
}
// 第二串是否为正确的json,这里我们就粗略的检查了,有时候我们需要从后面来发现json传错的数据,做分析
if (!logArray[1].trim().startsWith("{") || !logArray[1].trim().endsWith("}")) {
return false;
}
} catch (Exception e) {
// 错误日志打印,需要查看
logger.error("parse error,message is:" + log);
logger.error(e.getMessage());
return false;
}
return true;
}
}
4、Flume日志过滤工具类,主要用于将错误日志、启动日志和事件日志区分开来,方便发往kafka的不同topic,代码如下:
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;
import java.util.List;
import java.util.Map;
/**
* Created by Administrator on 2019/1/18 0018.
*/
public class LogTypeInterceptor implements Interceptor {
@Override
public void initialize() {
}
@Override
public Event intercept(Event event) {
// 1获取flume接收消息头
Map<String, String> headers = event.getHeaders();
// 2获取flume接收的json数据数组
byte[] json = event.getBody();
// 将json数组转换为字符串
String jsonStr = new String(json);
String logType = "" ;
// startLog
if (jsonStr.contains("start")) {
logType = "start";
}
// eventLog
else {
logType = "event";
}
// 3将日志类型存储到flume头中
headers.put("logType", logType);
return event;
}
@Override
public List<Event> intercept(List<Event> events) {
ArrayList<Event> interceptors = new ArrayList<>();
for (Event event : events) {
Event interceptEvent = intercept(event);
interceptors.add(interceptEvent);
}
return interceptors;
}
@Override
public void close() {
}
public static class Builder implements Interceptor.Builder {
public Interceptor build() {
return new LogTypeInterceptor();
}
@Override
public void configure(Context context) {
}
}
}
配置Flume conf
a1.sources=r1
a1.channels=c1 c2
a1.sinks=k1 k2
# configure source
a1.sources.r1.type = TAILDIR
a1.sources.r1.positionFile = /opt/module/flume/log_position.json
a1.sources.r1.filegroups = f1
a1.sources.r1.filegroups.f1 = /tmp/logs/app.+
a1.sources.r1.fileHeader = true
a1.sources.r1.channels = c1 c2
#interceptor
a1.sources.r1.interceptors = i1 i2
a1.sources.r1.interceptors.i1.type = com.atguigu.flume.interceptor.LogETLInterceptor$Builder
a1.sources.r1.interceptors.i2.type = com.atguigu.flume.interceptor.LogTypeInterceptor$Builder
# selector
a1.sources.r1.selector.type = multiplexing
a1.sources.r1.selector.header = logType
a1.sources.r1.selector.mapping.start = c1
a1.sources.r1.selector.mapping.event = c2
# configure channel
a1.channels.c1.type = memory
a1.channels.c1.capacity=10000
a1.channels.c1.byteCapacityBufferPercentage=20
a1.channels.c2.type = memory
a1.channels.c2.capacity=10000
a1.channels.c2.byteCapacityBufferPercentage=20
# configure sink
# start-sink
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.kafka.topic = topic_start
a1.sinks.k1.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092,hadoop104:9092
a1.sinks.k1.kafka.flumeBatchSize = 2000
a1.sinks.k1.kafka.producer.acks = 1
a1.sinks.k1.channel = c1
# event-sink
a1.sinks.k2.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k2.kafka.topic = topic_event
a1.sinks.k2.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092,hadoop104:9092
a1.sinks.k2.kafka.flumeBatchSize = 2000
a1.sinks.k2.kafka.producer.acks = 1
a1.sinks.k2.channel = c2
编写控制Flume启停的脚本
#! /bin/bash
case $1 in
"start"){
for i in hadoop102 hadoop103
do
echo " --------启动 $i 采集flume-------"
ssh $i "nohup /opt/module/flume/bin/flume-ng agent --conf-file /opt/module/flume/conf/file-flume-kafka.conf --name a1 -Dflume.root.logger=INFO,LOGFILE >/dev/null 2>&1 &"
done
};;
"stop"){
for i in hadoop102 hadoop103
do
echo " --------停止 $i 采集flume-------"
ssh $i "ps -ef | grep file-flume-kafka | grep -v grep |awk '{print \$2}' | xargs kill"
done
};;
esac
创建Kafka topic和启动消费者
cd到kafka安装目录,执行以下命令
1、创建Kafka topic
bin/kafka-topics.sh --zookeeper hadoop102:2181,hadoop103:2181,hadoop104:2181 --create --replication-factor 1 --partitions 1 --topic topic_start
bin/kafka-topics.sh --zookeeper hadoop102:2181,hadoop103:2181,hadoop104:2181 --create --replication-factor 1 --partitions 1 --topic topic_event
2、启动消费者
bin/kafka-console-consumer.sh \
--zookeeper hadoop102:2181 --from-beginning --topic topic_start
bin/kafka-console-consumer.sh \
--zookeeper hadoop102:2181 --from-beginning --topic topic_event
完成以上步骤后,通过脚本启动Flume,Flume采集日志文件中的数据,然后发送给Kafka。
Flume采集Kafka消费者的数据并下沉到HDFS
编写Flume conf
## 组件
a1.sources=r1 r2
a1.channels=c1 c2
a1.sinks=k1 k2
## source1
a1.sources.r1.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.r1.batchSize = 5000
a1.sources.r1.batchDurationMillis = 2000
a1.sources.r1.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092,hadoop104:9092
a1.sources.r1.kafka.zookeeperConnect = hadoop102:2181,hadoop103:2181,hadoop104:2181
a1.sources.r1.kafka.topics=topic_start
## source2
a1.sources.r2.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.r2.batchSize = 5000
a1.sources.r2.batchDurationMillis = 2000
a1.sources.r2.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092,hadoop104:9092
a1.sources.r2.kafka.zookeeperConnect = hadoop102:2181,hadoop103:2181,hadoop104:2181
a1.sources.r2.kafka.topics=topic_event
## channel1
a1.channels.c1.type=memory
a1.channels.c1.capacity=100000
a1.channels.c1.transactionCapacity=10000
## channel2
a1.channels.c2.type=memory
a1.channels.c2.capacity=100000
a1.channels.c2.transactionCapacity=10000
## sink1
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = /origin_data/gmall/log/topic_start/%Y-%m-%d
a1.sinks.k1.hdfs.filePrefix = logstart-
a1.sinks.k1.hdfs.round = true
a1.sinks.k1.hdfs.roundValue = 30
a1.sinks.k1.hdfs.roundUnit = second
##sink2
a1.sinks.k2.type = hdfs
a1.sinks.k2.hdfs.path = /origin_data/gmall/log/topic_event/%Y-%m-%d
a1.sinks.k2.hdfs.filePrefix = logevent-
a1.sinks.k2.hdfs.round = true
a1.sinks.k2.hdfs.roundValue = 30
a1.sinks.k2.hdfs.roundUnit = second
## 不要产生大量小文件
a1.sinks.k1.hdfs.rollInterval = 30
a1.sinks.k1.hdfs.rollSize = 0
a1.sinks.k1.hdfs.rollCount = 0
a1.sinks.k2.hdfs.rollInterval = 30
a1.sinks.k2.hdfs.rollSize = 0
a1.sinks.k2.hdfs.rollCount = 0
## 控制输出文件是原生文件。
a1.sinks.k1.hdfs.fileType = CompressedStream
a1.sinks.k2.hdfs.fileType = CompressedStream
a1.sinks.k1.hdfs.codeC = lzop
a1.sinks.k2.hdfs.codeC = lzop
## 拼装
a1.sources.r1.channels = c1
a1.sinks.k1.channel= c1
a1.sources.r2.channels = c2
a1.sinks.k2.channel= c2
Flume启动停止脚本
#! /bin/bash
case $1 in
"start"){
for i in hadoop104
do
echo " --------启动 $i 消费flume-------"
ssh $i "nohup /opt/module/flume/bin/flume-ng agent --conf-file /opt/module/flume/conf/kafka-flume-hdfs.conf --name a1 -Dflume.root.logger=INFO,LOGFILE >/opt/module/flume/log.txt 2>&1 &"
done
};;
"stop"){
for i in hadoop104
do
echo " --------停止 $i 消费flume-------"
ssh $i "ps -ef | grep kafka-flume-hdfs | grep -v grep |awk '{print \$2}' | xargs kill"
done
};;
esac
更多推荐
所有评论(0)