博主是在Jupyter Notebooks上进行练习的,如果想知道如何创建Jupyter Notebooks,请点击这里

在coding 之前,得安装graph_objs

pip install graph_objs

这次实验使用的数据只是用来练习

先看要使用的数据:

import chart_studio.plotly as py
from plotly.offline import download_plotlyjs,init_notebook_mode,plot,iplot
import plotly.graph_objs as go
import pandas as pd
init_notebook_mode(connected=True)

df = pd.read_csv('2014_World_GDP')
df.head()

结果如下:
在这里插入图片描述

data = dict(type='choropleth',
           locations = df['CODE'],
           z = df['GDP (BILLIONS)'],
           text = df['COUNTRY'],
           colorbar = {'title': 'GDP in Billions USD'})

layout = dict(title = '2014 Global GDP',
             geo = dict(showframe = False,
                       projection = {'type':'mercator'}))

choromap = go.Figure(data=[data], layout = layout)
iplot(choromap)

结果如下:
在这里插入图片描述

data = dict(type='choropleth',
           locations = df['CODE'],
           z = df['GDP (BILLIONS)'],
           text = df['COUNTRY'],
           colorbar = {'title': 'GDP in Billions USD'})

layout = dict(title = '2014 Global GDP',
             geo = dict(showframe = False,
                       projection = {'type':'stereographic'}))

choromap = go.Figure(data=[data], layout = layout)
iplot(choromap)

结果如下:
在这里插入图片描述

data = dict(type='choropleth',
           locations = df['CODE'],
           z = df['GDP (BILLIONS)'],
           text = df['COUNTRY'],
           colorbar = {'title': 'GDP in Billions USD'})

layout = dict(title = '2014 Global GDP',
             geo = dict(showframe = False,
                       projection = {'type':'natural earth'}))

choromap = go.Figure(data=[data], layout = layout)
iplot(choromap)

效果如下:
在这里插入图片描述


如果觉得不错,就点赞或者关注或者留言~~
谢谢~ ~

Logo

永洪科技,致力于打造全球领先的数据技术厂商,具备从数据应用方案咨询、BI、AIGC智能分析、数字孪生、数据资产、数据治理、数据实施的端到端大数据价值服务能力。

更多推荐